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A Lavrentiev model of the flow about a blunt two-dimensional body with a 
separation bubble is considered. Physical bases of the model are discussed in 
relation to other wake models. The Lavrentiev wake bubble contains a pair of 
closed free streamlines enclosing the regions of vorticity. It is shown, by means 
of conformal mapping, that the complex potential can be expressed in terms of 
elliptic functions, and a one-parameter family of exact solutions has been 
constructed for a normal flat plate and truncated wedges, for both an unbounded 
and a bounded stream. A procedure for relating the value of the parameter to 
the Reynolds number of the real fluid flow is indicated. 

1. Introduction 
The flow past a bluff object in a uniform stream has long been recognized as 

one of the unresolved problems in fluid dynamics. The complexity of the problem 
may be largely attributed to the instability of the flow. At present our capability 
of treating flow separation in a viscous fluid, even without instability, is far from 
satisfactory. In  the subsequent discussion, we shall confine ourselves to quasi- 
steady wake flows. 

At high Reynolds numbers, the quasi-steady flow around a bluff object may 
be considered to consist of two regions: one is the boundary layer and the wake, 
in which the vorticity in the flow is assumed to be concentrated; the other is an 
outer inviscid irrotational flow. If the body is bluff, usually there will be a near 
wake or separation bubble, where recirculating flow occurs, and a far wake. 
Even for this relatively simplified version of the wake flow, there is as yet no 
satisfactory solution. 

There have been numerous experimental investigations of wake flows. We 
shall discuss some typical results from selected papers which are relevant to the 
present study. Because of the low level of the mean flow and the high level of the 
fluctuating flow in a near wake, experimental measurements of the velocity field 
are difficult. A series of careful measurements carried out with a Pitot tube by 
Arie & Rouse ( 1956) revealed some fundamental features of a quasi-steady near 
wake behind a flat plate. At a Reynolds number of the order of lo6, the length of 
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the wake bubble is about 17 times the half-width of the plate, and a uniform 
pressure prevails a t  the base of the plate, as well as over most of the separation 
bubble, except in regions close to the reattachment point. 

In  a series of related papers by Grove et al. (I 964) and Acrivos et al. (1 965, 
1968), important characteristics of a near wake behind a circular cylinder and 
bodies of other shapes were presented. Although these experiments were con- 
ducted at Reynolds numbers less than 200, their results are similar to those 
obtained at higher Reynolds numbers. Acrivos et aZ. (1968) found that the base- 
pressure coefficient for a flat plate reaches a constant value of - 0.6 at a Reynolds 
number of about 100, in agreement with the value - 0.57 found by Arie & Rouse 
(1  956) at a Reynolds number of about 105. It was found that the velocities in 
most of the near wake are small relative to the free-stream velocity, justifying 
the term ‘dead-water’ usually applied to flows in this zone. 

Through dimensional considerations, Acrivos et al. (1965) also indicated that 
the length of the near wake should increase linearly with the Reynolds number. 
This conclusion is obviously not valid for the case of a flat plate; in fact, the 
length of the near wake measured by M e  & Rouse is of the same order of magni- 
tude as that found by Acrivos et al., in spite of the large difference in Reynolds 
number. There are insufficient experimental data to ascertain the relation between 
the size of a wake and the Reynolds number. It appears to be plausible, however, 
to assume that the length of the near wake approaches a finite limit; at least 
there are no experimental results contradicting this assumption. 

Theoretical treatment of a near wake is inherently difficult, mainly because 
the wake boundary is not known. Consequently, it  is not easy to pose it as a 
boundary-value problem. Because of the uniform base pressure generally 
observed behind bluff objects, free-streamline theories have been used as wake 
models, and a survey of the subject has been given in a review paper by Wu 
(1972). It was found (Wu, Whitney & Brennan 1971) that free-streamline theory 
provides a satisfactory representation of liquid flows with cavitation and serves 
well in predicting wall effects of cavitating flows, but a connexion with viscous 
effects is not apparent. The limitations of free-streamline theory for the simula- 
tion of wake flows were discussed in some detail by Batchelor (1956). For wake 
flows, one is interested in both the separation and the reattachment, and the 
influence of the Reynolds number. In  dealing with closed wakes, the open-cavity 
model is apparently of limited use. Finite-cavity models, such as that of Ria- 
bouchinsky and the re-entrant-jet model, are unrealistic as far as the re- 
attachment, process is concerned. 

Free-streamline theory gains its popularity for wake-fl ow representation 
mainly through the fact that, once the base pressure is prescribed, the form 
drag can be calculated accurately with either of the aforementioned models. 
The exploitation of this property merely emphasizes the point that potential- 
flow theory could play an important role in the analysis of wake flow at high 
Reynolds numbers, but no insight is provided regarding the physical mechanism 
of the viscous flows in the near wake. 

Batchelor (1956) proposed a closed near-wake model which consists of uni- 
formly distributed vorticity and a cusped closure for the wake; no specific 
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( C )  

FIGURE 1. Possible dividing streamlines. (a) Closed. (b)  Re-entrant. (c) Open. 

FIGURE 2. Streamlines AB and CD. 

solutions, however, were given for the model, which is concerned with the 
limiting conditions at very high Reynolds numbers. The model assumes that 
viscous effects are concentrated along the boundary of the near wake, which 
becomes a singular surface as the Reynolds number tends to infinity. Tacitly, 
then, the model presupposes that the flow within the near wake is inviscid as 
the Reynolds number approaches infinity. 

In mathematical models of the near wake, the streamline emanating from the 
point of separation serves as the delineating boundary between the recirculating 
near wake and the outer flow. Sketches of three possible ways in which the 
dividing streamline may behave are shown in figure 1. We refer to this streamline 
as the boundary of the wake or separation bubble. That depicted in figure 1 (a) 
reattaches at a stagnation point. The re-entrant jet type is shown in figure 
1 ( b )  and the type open at the rear in figure 1 (c) .  The last two types are not 
possible models, since the former implies a fluid sink and the latter, a fluid source 
within the separation bubble. 

51-2 
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Lavrentiev (1962, p. 47) briefly sketched a possible wake model of the type 
shown in figure 1 (a)  which consists of a pair of closed free streamlines, as shown 
in figure 3. Two options were suggested for the construction of the wake model: 
to treat the flow in the region between the boundary of the near wake and the 
closed free streamline either as rotational or as irrotational. The one-paragraph 
description of the model was very brief, and no solutions were given nor was a 
physical basis for the model indicated. 

We note that, at high but finite Reynolds numbers, a distinction between 
two specific lines must be made. In  figure 2, the line AB represents the outer 
boundary layer and wake, while CD is the dividing streamline, discussed in the 
preceding paragraph, which terminates at the stagnation point D. In  physical 
terms, the dividing streamline CD in Lavrentiev’s wake and Batchelor’s cusped 
limiting streamline AB for infinite Reynolds number are not the same. As the 
Reynolds number increases indefinitely, the two are expected to approach each 
other, however, according to Batchelor. 

Of Lavrentiev’s two proposed models, that with vorticity between the wake 
bubble and the outer boundary of the wake is more realistic but a model with 
irrotational flow outside the wake bubble can also yield useful information, and 
in addition has the important advantage that an exact analytical solution can 
be derived. One may object that this irrotational-flow model gives zero drag for 
the blunt body; but so does the irrotational-flow pressure distribution about a 
slender body, which is used to obtain the pressure gradients for a calculation of 
the boundary layer on that body. If the boundary layer is still thin at the separa- 
tion point, the pressure distribution given by the Lavrentiev irrotational model 
could similarly serve as a first approximation for developing his rotational 
model. Perhaps even more useful is the fact that the pressure at the separation 
point given by the irrotational model can be used to calculate the drag if the 
experimental result that the pressure is constant on the surface of the body 
within the separation bubble is applied. 

In  common with other wake models, that of Lavrentiev yields a one-parameter 
family of wake bubbles which, if possible, should be correlated with the Reynolds 
number. Unlike other wake models, the irrotational Lavrentiev model can be so 
correlated, as will be indicated. 

The authors’ interest in this problem originated from an attempt to explain 
the large observed effect of channel walls on the drag of a blunt body (Lin 1966; 
Landweber 1970) in terms of the dimensions of the separation bubble. The 
Lavrentiev irrotational model was preferred and developed (Lin 1970), although, 
a t  the time, the authors were unaware of Lavrentiev’s proposals. 

The purpose of this paper is to present a mathematical solution of the Lavren- 
tiev irrotational model, both without and with walls. The solution is based on 
Riemann’s theorem on canonical mapping, the Schwarz reflexion principle, and 
on the elegant theory of Weierstrass elliptic functions. It should be noted that 
these ideas were present,ed and exploited in great detail by Sedov (1965, p. 213) 
in his treatise on two-dimensional flow problems. 
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FIGTJRE!~. A Lavrentiev model for an arbitrary symmetric blunt body. 

FIGURE 4. 5 plane. 

2. Plan of analysis 

plane in the following steps: 

(u) plane. The case without confining walls is treated first. 

d W/dz, where W is the complex potential. 

of arbitrary shape. 

wedges. 

The general plan of the analysis is to construct the solution on a parametric 

(i) Map the entire physical ( 2 )  plane onto a rectangular region in a parametric 

(ii) Establish the double periodicity in the parametric plane of dW/du and 

(iii) Derive specific forms for d W/du as a function of u for ;I symmetric object 

(iv) Derive specific forms for dW/dz as a function of u for a flat plate and 

(v) Specify conditions for the determination of mapping parameters. 
(vi) Derive the solution for the general case of flow past wedges. 
(vii) Obtain the solution for the cascade problem for a flat plate by the same 

procedure, i.e. steps (i)-(v). For the cascade problem, an infinite strip, instead 
of the entire z plane, is mapped onto a rectangular region. 

(viii) The solution of the cascade problem for wedges can be obtained similarly, 
although a detailed solution is not presented here. 
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3. The physical (z)  plane and the parametric (u) plane 
Consider a two-dimensional, symmetric, potential flow in the z plane past a 

symmetric obstacle Lo with a separation pocket EBB' inside which there are two 
symmetric closed curves L, and L, which will be taken as free, constant-pressure 
streamlines. The z axis will be taken as the axis of symmetry; see figure 3. Then 
Lo, L, and L, are contours enclosing three separate regions, of which that inside 
Lo is given but the shapes of L, and L, are initially unknown. In  figure 3, A ,  A ,  
and B are stagnation points, and the closed curve EBPA, E bounds the separation 
pocket. 

In  the following two steps, the physical plane will be mapped into a parametric 
u plane where L, and L, have a known shape. 

3.1. Canonical annular region in plane 

By the theorem of canonical mappings (Nehari 1952), the triply connected 
physical plane can be mapped one-to-one into an annular region in a c plane; 
see figure 4. L, and L2 are mapped into concentric circles of radii rl and r2 in the 
6 plane and Lo is mapped into a concentric circular arc A A ,  of radius r3. Infinity 
in the z plane is mapped into the point G in the plane. We may choose the 
mapping such that B and G lie on the same circle as AA,. The radii satisfy the 
relation r1r2 = r:, 

as is seen by applying the Schwarz reflexion principle to the line segment A ,  BGA 
in the z plane and the corresponding circular arc in the E plane. 

(1) 

3.2.  The parametric (u) plane 

If a radial cut CD (or C, 0,) is introduced, the annular region in the E plane is 
mapped one-to-one into a rectangular region C, D, DCC, in the u plane, shown 
in figures 5 and 6 ,  by 

iw ( 7TiU 
= -- 'In-, < = rlexp-, 

rl w1 
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, -Vi 
4 Y (21: *) 

(4 
FIGURE 6. Mapping Y = Y(u). (a) u plane. (b)  Y plane. 

where w1 is real. We define the imaginary number wg by 

iw !r2 
w2 = u ( r J  = --lln-. 

7T T l  
(3) 

Then, in figure 4 we have DID = 2w, and DC = lw21. The Schwarz reflexion 
principle then shows that the circle Lo in the plane maps into a parallel line 
midway between D,D and C,C in the u plane, along which lie the points 1, y, 
a, E and a,, the images of B, G ,  A ,  E and A,. We may choose w1 = 1 and 

u(DJ = (0, O ) ,  u(D) = (2, O ) ,  y = 1 +jp+ (4a-c) 

Equations (4) exhaust the three degrees of freedom available to a conformal 
mapping. The remaining parameters must be determined by other conditions 
which will be considered subsequently. 

4. Periodcities of d W / d u  and d W / d z  on the parametric (u) plane 
Let W = # + i$ denote the complex potential, where # is the velocity potential 

and $ the stream function. We shall show that d W / d u  and d W / d z  are doubly 
periodic. 

By (2), we have [ (u)  = c(u + 2w,). Since z = f ( C ) ,  this yields 

z ( u  + 2w1) = z(u), ( 5 )  

W[Z(U)] = W [ z ( u  + 2wJ-j ( 5 4  

and d W ( u ) / d z  = d W(U + 20,) /d~,  (6) 

i.e. z ( u )  is periodic with period 2w,. Then we also have 

i.e. d W ( u ) / d z  is periodic with period 2w1. This implies that d W / d u  is also periodic 
with period 2w1, since d W / d u  = (d W / d z )  (dzldu).  

Next we observe that $ = - $o, 0 and $o along C, C, GA and D, D respectively, 
where a constant. Then, applying the Schwarz reflexion principIe successively 
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FIUWRE 7. Hodograph plane for flow past a wedge. 

to GA and C,C in the u plane, and to the corresponding line segments in the 
W plane, we obtain 

W(u  + 02) = W(u)  - 2i3hO 

and hence d W ( u ) / d u  = d W(u  +wZ)fdu. (7) 
Lastly, we shall show that Y = d W l d z  is periodic with period 20,. For this we 

employ the condition that [ YI = constant along C,C and D,D, so that C,C 
and D,D in the u plane map into the same circle in the hodograph plane 
Y = U - iV. Then, by the Schwarz reflexion principle, mirror images u* and 
u**inC,CandD,Dofapointuyield Y(u*) = Y(u**). But, asisreadilyverified, 

u* = u*"+2w2 

d W ( u ) / d z  = d W(u  + 2w,)/dz. 

and hence, dropping the superscripts, 

(8) 

Clearly the mapping Y(u) is not one-to-one; it is, however, single-valued, which 
is all that is required. The above arguments are demonstrated schematically in 
figure 6; a hodograph for a wedge is shown in figure 7. 

5. Construction of d W / d u  

large values of I z [ ,  the complex velocity may be expressed in the form 
We have shown that d W / d u  is doubly periodic with periods 2 0 ,  and 0,. For 

d W / d z  = U+Cz/z2+ ..., 

where U is the free-stream velocity. Because z ( u )  has a pole of first order at 
u = y ,  in the neighbourhood of u = y we can write 

(9) z ( u )  = k / ( u  - y )  + ko + k,(u - y )  + . . . . 
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Hence we obtain 

and 

dW - = u+- c2 (u- y)2+ ... 
dz k2 

+ao+a,(u-y)+..., 
dW dWdz kU 
d u  dz  d u  ( u - Y ) ~  
- -  ---=-- 

i.e. d W/du has a pole of second order at u = y.  
Furthermore, there are no other singular points of W(z)  outside the given 

obstacle Lo and the hollow vortices L, and L2. The fact that d W/du is regular at 
u = a or a, may be demonstrated as follows. Since a is a branch point of order 
1 for a blunt body, we have in the neighbourhood of z = Z, 

u - a  = c 2 ( Z - Z , ) 2 + c s ( Z - Z g ) 3 +  ..., dU/dZ = 2c2(2-2,)+ ... 
and 

Thus 

dW/dz = k(z-z,)+ .... 
dW dWdz k ( z - z A ) +  ... -=--= 
d u  dz  d u  ~ C ~ ( Z - Z , )  + ... 

and hence dW/du is regular at u = a, and similarly at u = a,. A similar proof 
may be given for the case where A is a corner point. 

We have now seen that d W/du is meromorphic and doubly periodic. Hence i t  
is an elliptic function of order 2, which may be written in the form 

d W/du = kU[Q - P(u - y ;  2wl, w2)], (12) 
where P ( u  - y ;  2wl, w2) is the Weierstrass Pe function with periods 213, and 02, 

and Q and k are undetermined constants. dW/du is readily integrated to yield 

W ( U )  = kU[Qu + 6(u-y;  2 ~ 1 ,  ~ 2 )  + Qol, (13) 

where <(u- y ;  2wl, w2)  is the Weierstrass zeta function with quasi-periods 2w, 
and w2, and Qo is a constant. This expression suggests that we can interpret the 
extended u plane as a flow field with a free-stream velocity Q passing through a 
cascade of doublets located at u = y and its congruent points y + 2mw, +- nu2 
(m, n = 2 1, 2 2, f 3, . . .). See the sketch of streamlines in the u plane, figure 5. 

Let us recall that the streamlines passing through points B and E in the 
z plane form the boundary of a flow pocket. We may then state that, in the 
period rectangle, the closed streamline passing through /3 and e divides the flow 
into two distinct regions, one with streamlines originating and terminating a t  
u = y ,  and the other with streamlines without any direct geometric connexion 
with the point u = y .  The latter corresponds, in the z plane, to the region encIosed 
in the pocket A ,  EBFA,, and the former to the rest of the flow region. In  order 
to accomplish this division, /3 and e in the u plane must be taken as stagnation 
points, and hence are the two zeros of the elliptic function (12), associated with 
the pole of second order at u = y .  The theory of elliptic functions then requires 
the relation 

to hold, and the condition that pis  a zero of d W/du gives the value of Q:  
€+/3 = 2y (14) 

( 1 4 4  Q = P(P-7;  2 ~ 1 ,  ~ 2 ) .  
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6. Flow past a flat plate 
The foregoing derivation of dW/du is for flows past arbitrary symmetric 

obstacles. An expression for d W/dz is also required to complete a solution. This 
will now be constructed for the case of a flat plate. 

6.1. Construction of d W/dz and dzldu 

It has been shown that d W/dz is periodic with periods 2w, and 20,. The nature of 
the zeros and singularities of dW/dz will now be investigated. For a flat plate, 
A ,  A ,  and B are the only stagnation points in the z plane, and hence these points 
are simple zeros of d W/dz. Then, since u = a is a branch point of z(u)  of order 1, 
we have 

Similarly, in the neighbourhood of a,, 

dW/dz = a,(u-a)*+a,(u-a)+ ... . (15) 

dW/dz =b,(~-a,)*+b,(~-a,)+ .... (16) 

dW/dZ = C~(U-/?)+C,(U-P)~+ .... (17) 

On the other hand, since z(u) is single-valued at u = By we have 

We shall now show that dW/dz is singular at u = Z, 01, and p ,  the complex 
conjugates of a, a, and p. The proof is based on the Schwarz reflexion principle, 
applied to the line D,D in the u plane and the corresponding circle of radius 
h = IdW/dzI in the hodograph plane Y = dW/dz. Mirror images in D,D then 
become inverse points relative to the circle and we have Y ( U )  = h2/Y(u) .  This 
indicates that Z and El are singular points, and branch points of order 1, while 
p is a simple pole of d W/dz. 

Now consider the expression 

where a(u) is the Weierstrass sigma function, with quasi-periods 2w, and 213, 
understood, C, and S are real constants, and 7, = C(w,; 2w,,2w2). We note that 
7, is imaginary when w1 is real and w2 imaginary, as in the present case (Abra- 
mowitz & Stegun 1964, p. 633). Another form ford W/dz is 

C 
( 1 8 4  - -- C -- - dW 

dz [P(u-a)  -e,]~[P(u-a,) -e,])tP(u-p) -e2]* - n(u)' 
where e2 = P(w2), and the complex number 

c = [Co/a2(w2)l exp ('312(8. + 9% +P) +is> 

a(u - ~ ) / o ( u  - a)  = a(@,) exp ['31,(u - a)]  [P(u - a)  - e,]t 

(19) 

can be derived from (18) by means of the relation (Dutta & Debnath 1965, 

P. 73) 
(20) 

and similar expressions in a, and /?. Here the Weierstrass Pe functions have 
periods 2w, and 2w,, in contrast with those for d W/du in (12). It is apparent, then, 
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from (18a) that the form for d Wldz has the required periods 2w1 and 2w,. Further- 
more, since a(u) has a fist-order zero at u = 0, we see that (18) has zeros at a, 
a1 and p, a pole at p, and singular points E and El with the desired type of 
branching. 

We must also show that the normal flat plate is a streamline, or, equivalently, 
that arg d W/dz is constant for points u on the line segment between a and a,, 
i.e. for u = a +t(a,--a), 0 < t < 1, This may be proved by observing that, when 
w1 is real and w, is imaginary, the Pe function is real for real values of its argument 
and e2 is also real (Dutta & Debnath 1965, p. 40). Hence, since u--a, u-a, 
and u-/3 are real for values of u on aal, P(u-a)-e,, P(u-a,)-e, and 
P(u - p) - e2 are also real. Nor can these factors vanish in the above interval 
since the only zeros of P(u)-e, occur at u = w2 (Whittaker & Watson 1950, 
p. 443). Hence, for these values of u, arg [d Wldz] is constant, as we wished to  
show. Thus the expression for d W / d z  in (18) or (18a) appears to be suitable for 
the flow about a normal plate. 

Since L1 and L, are free streamlines, dW/dz along L, and L, must have a 
constant modulus. We shall now show that (18) satisfies this condition. We note 
that q2 is imaginary and that u ( z )  = a ( z )  (Abramowitz & Stegun 1964, p. 631). 
Then, along L,, where u is a real number, 

- 

a(u - a )  a(u - a)  
l m l = l ~ l = 1 ,  

with similar results involving a1 and p; hence Id W/dzf = C,. By using the sigma- 
function identity 

a(u + 2w,) = - a(u) exp [2qi(u +us)], qi = S(ut; 2u1, 2w2) (i = 1,2), 

one can similarly establish that Id Wldxl = C, along L,. 
The function z(u) may now be obtained from 

where F(u) = (dW/du)/(dW/dz) is given by (12) and (18). We note that z(u) 
has a branch point of order 1 a t  u = E ,  but is regular at u = p. The former property 
may be demonstrated by observing that dW/du = 0, dW/dz 9 0 and hence 
dzldu = 0 at u = E. Then 

z - z E  = m,(u-~)2+m~(u-e)~+ .... 
On the other hand, u = /3 is a regular point, since /3 is a simple zero of both 
d W/du and d Wldz. 

6.2. Determination of parameters 

Except for the three conditions (4a-c), the parameters defining the mapping 
remain unspecified. In  order to satisfy properties of mapping functions appro- 
priate to the present problem, the parameters must be interrelated in a specific 
manner. The following conditions need to be imposed. 
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Velocity at infinity. Equating the Taylor expansion of d W / d z  about u = y in 
(18a) to its asymptotic form given in ( lo) ,  we obtain 

u + (CZ/K) (u - Y ) ,  = C P -  - 7) f l (Y )>ln  ( Y ) ,  

where 

and P'(u) denotes dP/du .  Put 

a = a+ iw, ,  q = al+iw,, ,8 = b++w,,  y = 1+8w2. 

Then, since U is real, equating the first terms of the expansions and applying 
(1 9) yields 

and since (Abramowitz & Stegun 1964, p. 633) 

is+ &qz(a +al + 2b) = 0, (23) 

(24) 

(25) 

02(wz)  = - [2e; + Gel e2 + 2e2,I-i exp (7, w,), el = P( I), 

from (19) amd (23) we obtain 

C = -Co[2e:+5ele,+2ei]+ = U n ( y ) .  

We also see that the linear term in u - y must vanish. This gives 

= 0. (26) 
P'( 1 -a) P'( 1 - al) 2P'( 1 - b) + 

'(') P(1-a) -e ,  P ( l - a l ) - e , f P ( l - b ) - e ,  

Periodicity of z ( u ) ,  We have seen in ( 5 )  that z ( u )  is periodic with period 204. 
According to its definition, P(u) is also periodic with period 2w1. We then have 

a+ 2w, u+2w1 

a+% 
F(u)  d u  = la F(u)  d u  +j  P(u) du .  z(u+2w,) = 

In  the last integral let us change the variable to u' = u - 2w1. We then obtain 

F(u'+ 2 4  du' = F(u') du' = z(u). 

Hence the condition z ( u  + 2w,) = z ( u )  is equivalent to 

Here, from (12) and (18a), F ( u )  is given by 

F(u) = (kU/C)  [ & - P ( u - Y ; ~ , ~ , ) ]  n ( ~ ) .  (28) 

Let us take as the path of integration the horizontal line ,8ym,, avoiding the 
point y by a small semicircIe with y as centre which makes a zero contribution 
to the integral. Put u = p++wz ,  0 < p < 2w1 = 2. We see that F(u)  is real for 
0 < p < a and al < p < 2, but imaginary for a < p < a,. Hence (27) yields the 
pair of equations 

P(u) d u  = 0, F(u)  d u  = 0. (29a, b) C' 
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Although the path of integration of the first of these integrals passes through 
the singular pointy, it can be evaluated by treating the integrand as a generalized 
function (Lighthill 1960, p. 16). 

Width of the $at plate. We may normalize distance such that the plate is two 
units wide. This gives Z(E) = i, or from (21), 

1; F ( u )  d u  = i. 

6.3. Summary of equations 
For a flat plate in an unbounded stream, the complex potential has been expressed 
in terms of a parameter u by means of the equations 

z(u) = laUP(u) du ,  

F ( u )  = kU[4? - P(u - y ;  2,643 WU)/C, 

C = -Co(2e2,+8ele2+2e$)* = UII(y) .  

(28) 

4? = P(r6-y;2,@J,), (14) 

(25) 

For determining the five constants w2, k, a, a, and b, we have the following four 
equations: 

S(y) = 0, ( 2 6 )  

L - 2  (29a, b) 

This indicates that there exists a one-parameter family of solutions. 
In  order to obtain numerical solutions, it is convenient to take o2 as the free 

parameter. For a, given value of u2, the equations can be solved for the other 
constants by an iterative procedure. Let a,, a,, and b, denote an approximate 
solution of (26) and (29a, b),  and put 

u~,,+~ = a,, + Aa,, a,,, = a, + Aa, b,+l = b, + Ab. 

Then, expanding (26) in a Taylor series, we obtain 

Also, from the Taylor expansion of F(u) ,  we obtain 

- Pn(aln) +I 3 du] Aal 
p aa1n 

+ A b j p 2 d u  = 0, with 
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+ A b I V 2 d u  = 0 ,  with 

Here P,(u) denotes P(u; a,, a,,, b,). The solution of this set of linear equations 
yields values of Aa, Aa, and Ab, and hence values of a,,,, a,,,,, and b,+l. 

6.4. Some flow characteristics 
These results can be immediately applied to derive expressions for the circulation 
and stream function of the free streamlines. The circulation is given by the 
change in the complex potential along D, D, which, by (12), yields 

I' = W ( 2 ) -  W(0)  = 2 Q + k U [ C ( 2 - ~ ) - 5 ( - ~ ) ]  
4 

= 2Q + 2kU71(2w1, w2) (31) 

(32) 

since (Abramowitz & Stegun 1964, p. 631) 

6(u + 2w1) = C(U) + 271, 71 = a w l ;  2% we). 

Let us take ?,h = 0 as the value of the stream function on the axis of symmetry. 
Since the velocity potentials at corresponding points on the free streamlines are 
equal, we can obtain the stream function ?,ho on the free streamline L,, or C,C, 
from the difference in the complex potentials. Applying (13), we find 

i@o = +I W(w2) - W(0)l = a&% + +kU[C(w, - r) - a - r)l 
= +Qwz + kuqz, q z  = C(&J~; 2 ~ 1 ,  wz),  (33) 

in which the formula corresponding to (32) for the period o2 has been applied. 
As was remarked in the introduction, the drag on the body, with the assumed 

closed wake and the interior constant-pressure streamlines, must be zero, since 
the force on the constant-pressure streamlines is zero and the drag on the 
combination of the body and the closed wake is zero. A drag c m  be determined, 
however, by using the pressure distribution on the body up to the separation 
point E ,  and assuming that the pressure on the portion of the body surface within 
the separation bubble is constant and equal to the pressure at E. The drag D 
on the flat plate would then be given by 

D = 2 1: ( p  - p E )  dg = i p l A  w2dz +pw&, 

where w is the magnitude of the velocity along the plate, i.e. w = i d  W/dz, and p 
is the mass density of the fluid. Hence we obtain 

E 

where d W/du and d W/dz are given in ( 12) and ( 18). 
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FIGURE 8. Lavrentiev model for a wedge of angle 2n/n. 

7. Flow past wedges 
The previously derived expressions ( 1 2 )  and (13) for dW/du and W(u)  are 

applicable to arbitrary symmetric obstacles, and hence to the case of a sym- 
metrically situated wedge. Let 277/n denote the interior angle of the wedge, 
shown in figure 8. 

The form of d W/dz as a function of u for a wedge is also doubly periodic in the 
u plane, with periods 2 and 2w2, and hence its specification depends only upon 
the nature of its zeros and singularities. Again, the zeros of d W/dz occur at a, a, 
and /3 and its singularities are situated at the complex conjugates E, El and p .  As 
before, d W/dz has a simple zero at u = p and a simple pole at p .  

For exterior flow about the wedge, one can readily verify that the complex 
potential 

gives the desired branching of the streamline 9 = 0 from GA to AE in the 
neighbourhood of zA. Also, since the exterior angle 2n(n  - l ) / n  a t  zA is transformed 
into 27r a t  a, we have 

We obtain, then, for u M a, 

W(z)  = b,(z - za)n/(n-1) + . . . 

2 - 2, = ko(u - a)1-1/% + . . . . 

Similarly, for interior flow in the wedge, in the neighbourhood of A ,  we obtain 

Near E and El we then have 
d W/dz N (U - aJ1-'fn. 

d W/dz N (a - Z)-'In, d W/dZ N (ZG - E1)-l+'/n. 

A form for d W/dz with the desired characteristics is then 

or by applying (20), 

d W/dz = K/{[P(u - a)  - e2]llZn [P(u - a,) - e2](n-1)/2n [P(u -p) - e,]i}, (36) 
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From (36), we see that dW/dz has the required periods 2 and 2w2 and, by the 
same arguments as for the flat plate, that the wedge is a stream surface. 

The function z(u) is now given by 

z(u) = / I G ( u )  du, (38) 

where G(u) = (d Wldu) (d W/dz)-1 is given by 

kU 
G(u) = [& - P(u - y ;  2 ,  w2)]  [P(u -a) - e2]1/2n [P(u - a,) - e2](n-1)/2n 

x [P(u- ,4) -e2]* .  (39) 

Application to (35) of the condition of constant velocity h along the free 
streamlines L, and L, again yields the result 

h = KO. 

The Taylor expansion of d W/dz in (36) about u = y gives 

d W/dz 2: K{[P(y - a)  - e2]llZn [P(y  - a,) - e2](n-1)/2n [P(y - ,4) - e2]&)-l 

Comparison with the asymptotic form of d W/dz in (10) yields 

i6 + n-lq2[a + (n - 1) a, + nb] = 0 

and, on applying (37) and (24), 

K = - K0[2e2, + 5e, e2 + 2ei]+ 

= U[P( 1 -a )  - e2]1/2n [P( 1 - a,) - e2](n-1)/2n [P( 1 - b )  - e2]* 

P'( 1 -a) 
~ ( 1 -  a)  - e2 

(n - 1 )  P'( 1 - a,) nP'( 1 - b )  

The condition z(u+ 2) = z(u) gives, as for the flat plate, 

and + = 0. 
~ ( 1  - a,) - e2 +P(I - b )  - e2 

G ( u ) ~ u  = 0, G ( u ) ~ u  = 0, (45% b )  
L - 2  LU1 

in which the path of integration is that indicated in (29a, b ) .  Finally, the con- 
dition that the side of the wedge A E  be of unit length yields the equation 

1; G(U) du = ein/n. (46) 

In  summary, the velocity potential is given parametrically by (13), (35), (38) 
and (39). For evaluating the five constants w2, k, a, a, and b,  we have the four 
equations (44), (45a, b)  and (46). The results for the circulation and the stream 
function of the free streamlines are identical with those for the flat plat,e, given 
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H2 J2 

FIGURE 9. Lavrentiev model with confining walls. 

in (31) and (33). The drag on the wedge, obtained in the same manner as for the 
flat date.  now becomes 

where d W/dz and d W/du are given in (36) and (12), respectively. 

8. The cascade problem 
When the present wake model is placed symmetrically between side walls a 

distance d apart, the problem may be treated as a cascade of the wake flow; see 
Sedov (1966). We shall treat only the case of the normal flat plate; the case of 
wedges may be derived similarly (Lin 1970). Since the general approach to this 
problem is similar to  that for the unbounded wake problem, only the aspects 
pertinent to the cascade problem will be emphasized. 

8.1. Formulation of problem 

Let Lo represent a symmetric obstacle symmetrically situated between walls 
H, J1 and H, J, a distance d apart, let L, and L, represent the two free streamlines 
and let L, represent the central streamline HIAEA,BJ ,  along which $ = 0 (see 
figure 9). The discharge in the channel is then Ud,  where U is the velocity of the 
incident uniform stream in the x direction. Here H and J represent points a t  
-I- co and - co respectively. 

By the theorem of canonical mappings, this region can be mapped into an 
annular region between concentric circles representing L, and L,, with L, and 
H J  mapped into slits lying on a third concentric circle, representing the stream- 
line $ = 0. As in the case without walls, the Schwasz reflexion principle requires 
that r: = rlr2, where r, is the radius of L,, r2 that of L, and r, that of the circle 
HAA, BJ in the 5 plane. 

This annular region is again transformed into a rectangular one in the para- 
metric (u) plane by the logarithmic transformation (2). The points B,  J ,  H ,  A,  

5 2  F L M  79 
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FIGURE 10. (a) 5 plane and (6) u plane for the cascade problem. 

E and A ,  in the z plane are mapped into the points /3, j, h, a, E and a, in the u 
plane. We also impose the condition that EE, and DD, be constant-pressure 
streamlines. Then, by the same arguments as were used in the case without walls, 
we may again establish the periodicities 

z(u+2w1) = z (u) ,  W(u+2w1) = W(u) ,  
d W  d W  d W  
d u  d u  d u  

d W  d W  d W  
d u  d u  d u  

- - (u+w,)  = - ( u + 2 w 1 )  = - (u),  

- (u+2w,) = - (u+2w1) = - (u). 

The transformation of the cascade flow in the z plane into the u plane requires 
that the discharge U d  flowing from H to J be preserved as a flow from a source at 
j to a sink at  h of strength Ud/27r, as sketched in figure 10. Here the streamlines 
Hl J1 and H, J, map into the line segment JH in the u plane. Then d W / d u  has 
simple poles at h and j ,  and hence it is an elliptic function expressible in terms 
of the Weierstrass zeta function: 

dW/du = (Ud/2n)  [ C ( u - h ) - < ( ~ - j ) + B ] ,  (48) 

where R is a constant. As in the case without walls, E and /3 are zeros o f d W / d u  
and hence we obtain for R the real quantity 

R = C(P-j)-C(P-h). (49) 

h+j = P + s ,  hr+j, = b + e ,  (50) 

The relation between the zeros and poles of an elliptic function gives 

where h,, j,, b and e are the real parts of h, j, ,8 and 6 respectively. 
Equations (48) may be integrated in terms of the sigma function 

a(u) = a(u; 2w1, w,) 

since C(u) = d(u)/a(u).  This yields 

V(U - h) 
W(U) =-  In- :: [ a(u - j) 
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in which the constant of integration has been evaluated from the condition that 
@ = 0 when u = a. 

The form of dW/dz is identical to that for the case without walls, since the 
nature of the zeros and singularities is not affected by the presence of the walls. 
Hence (18), (18a)  and (19) remain valid, but with C replaced by C’, and so does 
the proof that the flat plate is a streamline. The function z(u) is then given by 

z ( u )  = lauFl(u)du,  F,(u) = ::/55 - - 

where dW/dz and d W / d u  we given by (18a) and (48). The condition that L, and 
L, be free streamlines again yields the result that C, in (18) and (19) is the magni- 
tude of the velocity along these streamlines. 

8.2. Determination of parameters 

We shall first exploit the three degrees of freedom in a conformal mapping to 
make the following choices: 

(53) i (a)  U P , )  = (0, O ) ,  

(c )  h,+j, = 2. 

( b )  w, = 1, or u ( D )  = (2,0), 

The last condition implies that j and h, as well as 8 and /3, are symmetrically 
located with respect to the point 1 + +wZ, the centre of the period rectangle. The 
remaining parameters will be determined by the following conditions. 

Velocity at in$nity. The condition that, at z = + 00, d W/dz is real and given by 
dW/dz = U yields, from (18a), the same results as before, (23) and (25), but 
with the latter equation in the form 

C‘ = -C0[2e2,+5e,e,+2e2,]* = UII(h) .  (54) 

n(h) = I’I(j). (55)  

Since dW/dz = U at z = - 00, we also have 

We observe that (26) is the limiting form of (55)  as d 3 03. 

obtain the pair of equations 
Periodicity of z(u) .  By the same procedure as in the previous case, we now 

F1(u)du = 0, li1(u)du = 0, ( 5 6 %  b )  

(57) 

fa: -2  laa1 
where F,(u) = (Ud/2nC’) [<(u - h) - C(U - j )  + R] n(u) 

f and the paths of integration extend along the streamline Pol. The symbol 

indicates that the Cauchy principal values are to  be taken at the points h and j. 
The residues n(h) and II(j) contributed by the integrals around the small 
semicircles about h a n d j  cancel each other, by (55). 

Width of the flat plate. This condition yields 

JZ Fl(u) du = i .  (58)  

52-2 
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8.3. Summary of equations 

Por a flat plate in a channel, the complex potential has been expressed in the 
parametric form 

z (u)  = [uFl(u)du, 
J a  

(57) 

R = c ( P - j ) - [ ( p - h ) ,  C’ = UrI(h). (49)s (54) 

Ud 
27TcI F1(u) = - “(U-h)  -&-j) +Rl n(u), 

For determining the six constants 02, a, a,, b,  j,. and h,., we have the following 
five equations: 

hr+j,. = 2, rI(j) = IT@), (53h (55) 

(5% b )  

Hence there exists a one-parameter family of solutions. 

8.4. Some $ow characteristics 

We can now derive expressions for the circulation and stream function of the 
free streamlines and for the drag on the flat plate. We have, from (51), 

W ( u + 2 )  = [Ud/2n](ln[a(u-h+2)/~~(u-j+2)]+R(u-~0~+2)} 

= W ( U )  - (Ud/2n)  (h -j) + 2R, 71 = 6( I). 

(59) 
The circulation I? is then 

We also have, from (51), 
I? = -(2Ud/n)(h-j)+2R. 

W(U + ~ 2 )  = W ( U )  - Ud(h-j)  ?& + R u ~ ,  qz = {(I(B+J. 

The stream function Yo on the free streamline C, C is then 

Yo = iUd(h -j) 7,/27~ + ~Rw,.  (60) 

Pinally, the drag D on the flat plate is again given by (34), but with the complex 
potential W of (51). 

.9. Numerical results 
Definitions of the Pe function, the sigma function and the zeta function in 

terms of double series are suitable for analytical purposes but are clumsy for 
computations. We have taken advantage of the Jacobi theta functions and some 
similar, rapidly converging series in evaluating these elliptic functions. 
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w2 r L 

0.1 24.42 14-35 
0.3 9.70 6.00 
0.4 8.19 5.26 

TABLE 1 

Some results of the calculations of flows past a flat plate are given in table 1.  
Here I? represents the circulation around a free streamline, non-dimensionalized 
in terms of the free-stream velocity and the half-width of the plate. This indicates 
the total strength of the vorticity within the closed streamline. The quantity 
L denotes the length of the separation bubble. 

These, and some additional results given by Lin (1970), were obtained by a 
procedure which is believed to  be less efficient than the one indicated in $6.3.  
Furthermore, without a quantitative relation between the free parameter and 
the Reynolds number, the computed characteristics of the family of wake 
bubbles are of limited interest. It is planned to undertake the calculation of a 
more complete set of characteristics in conjunction with the procedure for 
relating the present wake model to viscous effects described in the next section. 

10. Connexion with viscous effects 
We shall now consider the relation between a solution of the irrotational 

problem for a particular value I? of the circulation about a free streamline 
within the separation bubble and the Reynolds number of a ‘real’ flow. In  the 
real flow, the no-slip condition is satisfied on the upstream face of the blunt 
body (PAE in figure 3)) on which a boundary layer, computable from the 
irrotational-flow solution, is present. The subsequent diffusion and convection of 
the vorticity in the space between AB and CD (figure 2)  cannot be readily 
determined, but we shall suppose that a reasonable approximation to the 
distribution of vorticity in this region will suffice, and can be assumed. Within 
the separation bubble, viscous effects, such as the no-slip condition on the 
surface of the body within the separation bubble, will be ignored under the 
assumption that the vorticity generated by viscosity within the bubble is 
concentrated as vortex sheets on the pair of internal free streamlines. 

The ‘real ’ flow field is now seen to be generated by the following mechanisms: 
a uniform stream in the + x direction, the known vorticity in the boundary layer 
and the assumed vorticity between the separation bubble and the outer boundary 
of the wake, a vortex sheet on the surface of the body within the separation 
bubble (with strength given by the velocity distribution on that surface, celcu- 
lated from the irrotational Lavrentiev model) and the vortex sheets on the free- 
streamline contours. In  this selection of the flow-generating mechanisms, the 
velocity within the blunt body has been taken to be zero. Because of the no-slip 
condition on the upstream face of the body, there is then no discontinuity in the 
normal component of the velocity across this surface, so that a source distribution 
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on this surface is unnecessary. A vortex sheet is required on the back face because 
of the discontinuity in the tangential component of the velocity. Thus it is 
possible to generate the entire dishrbance flow field by means of vorticity alone, 
with the velocity at  a point computed by means of the Biot-Savart law. 

The boundary layer on the upstream surface of the body, calculated from the 
pressure gradients of the irrotational flow for a particular value of the circulation 
I? about a free streamline, will have different vorticity distributions as the 
Reynolds number is varied. Consequently, the velocity at a point, computed 
from the uniform stream and the aforementioned distributions of vorticity, will 
also vary with the Reynolds number. The condition that the point A on the back 
face (figure 3) remains a stagnation point then gives a relation between the 
circulation and the Reynolds number. This point, rather than a point on the 
separation streamline, is selected for obtaining this relation because it is as far 
away as possible from the assumed part of the vorticity distribution within the 
zone between the separation streamline and the wake boundary, thus minimizing 
the error due to this assumption. 

11. Summary 
We have considered some general physical features of anear wake. In  particular 

we note that the dividing streamline of a wake bubble must reattach at  a stag- 
nation point and form the closure of the wake bubble. In comparison with others, 
Lavrentiev's wake model is seen to possess features that would best simulate 
the closure of a near wake. 

Solutions of Lavrentiev's wake model for a flat plate and wedges are derived 
by conformal mapping. Analysis and solution are conducted on a rectangular 
parametric (26) plane in which the forms of the solutions are indicated by the 
double periodicities of complex velocities. A one-parameter family of solutions 
is developed. The undetermined parameter provides the link between the model 
and the conditions of the real wake. 

To carry out a complete computation, numerical integration on the complex 
plane is necessary. Definitions, in terms of double series, of the Pe function, the 
sigma function and the zeta function are suitable for performing the analysis, but 
clumsy for computational purposes. Consequently, i t  is advantageous to use the 
Jacobi theta functions and some similar, rapidly converging series in evaluating 
these elliptic functions (Whittaker & Watson 1960, p. 462). A method of suc- 
cessive approximation has been developed for solving a set of simultaneous 
equations for three of four constants, the fourth serving as the free parameter 
of the solution. Associated flow parameters, such as the stream function and the 
circulation, may be easily computed. 

We note that a fruitful computation must be accompanied by a well-designed 
experimental study of a quasi-steady near wake; so far only a few computations 
have been performed (Lin 1970). A preliminary experimental study has been 
conducted to investigate features of the near wake which are pertinent to the 
Lavrentiev wake model (Lin & Sha 1975). With the solution for the cascade 
problem available, it is conceivable that the wall effect could be inferred from 
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the results of the present study after the relation of the model with viscous 
effects has been established in accordance with the procedure proposed here. 

This work was supported by the Office of Naval Research under Contract 
NO001 4-76-C-00012. 
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